
DETERMINING SOFTWARE (SAFETY) LEVELS FOR
SAFETY-CRITICAL SYSTEMS

 Doris Y. Tamanaha Meng-Lai Yin
dtamanaha@west.raytheon.com mlyin@west.raytheon.com

Raytheon Systems Company
Loc. FU, Bldg. 675, M/S AA341

1801 Hughes Drive, Fullerton, CA 92834

ABSTRACT

 For safety-critical software-intensive systems,
software (safety) levels are determined so that the
appropriate development process is applied. This
paper discusses issues of applying the results of fault
tree analysis to software (safety) levels determination.
In particular, the inconsistency problem, i.e.,
inconsistent software (safety) levels, is addressed and
an approach is presented.
Keywords: Fault tree analysis application, safety-
critical systems, software (safety) levels.

1. INTRODUCTION

 For safety-critical systems, process requirements
to develop the software need to be met. Several
standards have been evolved which classify
processes into levels, such as the RTCA/DO-178B
“Software Considerations in Airborne Systems and
Equipment Certification”[1] or the Software
Engineering Institute Capability Maturity Model
[2][3][4]. Applying the results of fault tree analysis
to determine the software (safety) levels is proposed
in this paper, since fault tree analysis has been
widely used for safety-critical systems.

 For large stringent systems, inconsistent software
(safety) levels can occur. This is due to the various
concurrent activities of different organizations, e.g.,
the software development group, the system
architecture group, and the safety group. This paper
describes the inconsistency problem, and the
strategy and methods to deal with this problem. The
goal is to ensure that appropriate software (safety)
levels are applied to the developed software.

2. DETERMINING LEVELS

2.1 Software (Safety) Levels

 Software (safety) levels determine the associated
process to be followed by the software developers.
There are several existing development processes
defined based on software levels, such as the
Capability Maturity Model (CMM) by the Software
Engineering Institute (SEI), the ISO 9000 series of
standards by the International Organization for
Standardization [2][3][4], and the RTCA/DO-178B
[1]. The discussion here focuses on the RTCA/DO-
178B standard.

 The RTCA/DO-178B “Software Considerations
in Airborne Systems and Equipment Certification”
[1] provides guidelines for the production of
software for airborne systems and equipment [5]. In
particular, five categories are identified for the
failure conditions, i.e., catastrophic, hazardous,
major, minor, and no effect. Five software (safety)
levels are defined accordingly, i.e., level A, B, C, D
and E. The software (safety) level determines the
development effort that demonstrates compliance
with certification requirements.

2.2 General Rules

 The top-down methodology based on the fault
tree models is fairly straightforward. The fault tree
considers not only the events related to the software,
but all the possible events that can cause the top
event (root event). The methodology first
determines the safety level of the top event, then
follows the 2 general rules listed below: (1) For the
events under an OR gate: the safety level of these
events are the same as that of the top event of the

OR gate. (2) For the events under an AND gate,
three cases are distinguished: (2a) If the event is
associated with a monitoring function, i.e., that it
monitors some other function(s), then this event has
the same level as that of the top event of the AND
gate. (2b) If the event is associated with a monitored
function, i.e., its function is monitored by some
monitoring function, then it can have a level lower
than that of the top of the AND gate. The
philosophy is that we believe the failure of this
function can be detected and corrected by the
monitoring function. (2c) If the events under an
AND gate do not have the monitoring/monitored
relationship, then they will inherit the same level as
that of the top event of the AND gate. However, if
these events are truly independent, then a level
lower than the top event can be assigned. For the
example shown in Figure 1, assuming the effect of
the top event (Hazardously Misleading Information)
is classified as level B according to RTCA/DO-
178B. Then, the safety level for this HMI is B. If
IE1 and IE2 are functions that have the
monitored/monitoring relationship, e.g., IE1 is the
monitored function and IE2 is the monitoring
function, then IE1 has safety level D and IE2 has
safety level B.

B
D

HMI

IE1 IE2

IE3 IE4Ea

Eb EfEeEc

Ed

B

D B

D B

D D B B

FIGURE 1. EXAMPLE FAULT TREE

 For the basic event Ea and the intermediate event
IE3, since IE1 has safety level D, they are marked as
level D in accordance with rule 1 above. Moreover,
for IE4, assuming the basic events Ee and Ef under
the AND gate do not have the monitored/monitoring
relationship. Thus, they are both marked as level B.
For efficiency, minimum cut sets can be used as

assistance. Moreover, some engineering judgement
is necessary when conflicts occurred [6].

2.3 The Process

 A six-step process relates the fault tree analyses
to the software activities is presented in Figure 2.
The first three steps are the preliminary marking,
whose results are recorded in a database called the
Requirement Management System (RMS). The
subsystem fault tree analyses and data flow analyses
were performed as parts of the preliminary marking.
The safety group conducted fault tree analyses,
while the software people conducted the data flow
analyses. The subsystem fault trees identify software
capabilities that can cause a hazard. In other words,
if a failure of a software capability contributes to a
hazard, it is identified in the subsystem fault tree.
Thus, the safety level for the software capability can
be marked, based on the general rules described
above. The marking results need to be integrated
into the software development process. The model
used for data flow analyses, referred to as the
capability model, is marked for this purpose.
Finally, the results are recorded into the RMS
database.

 When the preliminary marking is finished, the
software development process moves to the stages
of preliminary design and detailed design. It is
during this time frame that the software level
marking is refined and updated through extending
the subsystem fault trees. Extending the subsystem
fault trees is based on the information provided by
the software preliminary design and detailed design.
In software preliminary design, the CSCs (Computer
Software Components) of each CSCI (Computer
Software Configuration Item) are defined, as are the
major data stores and interfaces among CSCs. Thus,
the original subsystem fault tree can be extended to
the CSC level. In the detailed design phase, the
processes are further decomposed into Computer
Software Units (CSUs) and functions. Hence, we
can extend the fault trees to the CSU level.

 Due to the characteristics of large systems that
are composed of several organizations with different
objectives, inconsistent software (safety) levels are
expected. The results of this inconsistency are
schedule costs and safety risks. Hence, the

SDD

Mark Software Levels to
Software Capability bubbles

in the Capability Models

RMS
Reg. … CSCI CSC

 Subsystem Fault Tree
 Minimum Cut Sets

(Primal Tree)

 1 st cut set E1 E2
 2 nd cut set E3
 3 rd cut set E4 E5 E6
…

Capability Model

Detailed Design
DD1

Decompose process into CSUs/Functions

DD2
DOC Para. ID CSU
SRS 3.2.7.1 2001 xxx
SDD 2.3.7.6 1003 xxx

…

Mark Software Levels to
Software Capabilities

identified in the Fault Tree

Resolve Anomalies and
record Software levels

on RMS

Extended Subsystem
Fault Tree

Mark Software Levels in
SRSs

(Preliminary Marking)

SRS

SDD DFD

identify CSCs

Preliminary Design
PD1

Allocate SRS requirement paragraphs to CSCs
Allocate CSCs to processes

PD2
Allocate SRS requirement statement to CSCs

Mark Software levels
CSCs, Processes

and CSUs Extend Subsystem
Fault Tree to CSC,
Process and/or CSU

Level, as needed

STEP 1
STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

ASL AAL DAL

Figure 2. SOFTWARE (SAFETY) LEVEL DETERMINATION PROCESS

inconsistency needs to be resolved so that one
accepted development process can be applied. The
inconsistency problem is discussed next.

3. THE INCONSISTENCY PROBLEM

3.1 Inconsistent Views

 Large programs entail several organizations that
have impact on the software (safety) levels.
Unfortunately, these organizations often have
different views and responsibilities, which may
conflict with each other, often as a result of
changing requirements that affect revisions at
multiple levels, e.g., within the architecture,
software, or safety constraints. Hence,
resynchronization is needed.

The three organizations that are related to the
software (safety) levels are the software
development, system architecture, and safety
groups, as shown in Figure 3. The software group
follows a process to develop the software. System
architecture (with software representation) partitions
the system and decides which software resides on
which platforms. Usually, a single, consistent
process is followed for the software developed on
the same platform. The safety group analyzes the
system and derives software (safety) levels as
requirements.

 If the problem of inconsistent software (safety)
levels is not resolved, the software may not be
developed appropriately. If the inconsistency is not
resolved in a timely manner, schedule will be
slipped, and cost will be increased. Moreover, if the
inconsistency is not resolved correctly, the software
development process can be inadequate. In short, the
inconsistency problem needs to be resolved
correctly and in a timely fashion in order for the
system to be built.

4. THE APPROACH

4.1 The Basis

 A basic philosophy we took is that the
inconsistency is expected. Therefore, the existence
of all the software levels shall be recorded. From
there, the inconsistency can be identified. Only if we
can recognize the inconsistency can the
inconsistency problem be addressed and resolved.

 There are two types of inconsistencies. The first
type is referred to as the tolerable inconsistency
where the software developers follow a process that
exceeds the current process requirements. This
tolerable inconsistency implies that developed
software can be used in later phases when a higher
level is required (software levels are interpreted as
A > B > C > D > E, e.g., level A is higher than level
B, etc.) The second type of inconsistency is
intolerable, where the process that the developers
follow does not meet the current process
requirements for safety certification. Intolerable
inconsistencies must be identified and resolved.

Software
Development

Safety Level

System
Architecture

Design

Safety
Analysis

FIGURE 3. DIFFERENT VIEWS OF SOFTWARE
(SAFETY) LEVELS

4.2 The Process of Managing Inconsistent
Software (Safety) Levels

 To manage the inconsistent software (safety)
levels, three major steps are proposed: (1)
maintaining software (safety) levels associated with
different organizations, (2) cross-checking the
recorded software (safety) levels and identifying the
inconsistency areas, and (3) resolving the
inconsistency by involved organizations and
engineers.

 A process is defined to manage the inconsistency
problem, as shown in Figure 4. The process is
iterative, since the system development itself is
iterative. A central repository, e.g., the Requirement
Management System database, is maintained as
which is the center of the process. Configuration

control of the database is necessary to ensure the
overall consistency of the software (safety) levels.
Cross checking different software (safety) levels
will identify the inconsistent areas. To resolve the
problem of inconsistency involves the teamwork
efforts of software engineers, system engineers and
safety engineers.

4.3 Maintaining the Software (Safety) levels

 Because inconsistency is expected, all the
differences can be managed. The strategy is to
record all the software levels resulting from
different organizations, recognize any inconsistency,
and deal with the intolerable inconsistency
problems. The different software (safety) levels (due
to the various organizations) are recorded in the
Requirements Management System database. Three
different software (safety) levels are maintained, the
“Assigned Software Level” (ASL), the “Assessed
Architecture Level” (AAL), and the “Development
Assurance Level” (DAL). A detailed description of
each of the levels is addressed below. The goal of
managing the inconsistency is to assure that ASL ≤
AAL ≤ DAL (software levels are interpreted as A >
B > C > D > E, i.e., level A is higher than level B,
etc.).

 The ASL focuses on the severity effects and
hazard mitigation. The ASL is assigned based on the
system safety assessment results, e.g., the fault trees,
as described in Section 2. Note that this ASL serves
as the minimum acceptable software (safety) level,
as it is based solely upon the referenced safety
analysis and functional mitigation. The ASL is
implementation independent. The AAL is used to
reflect design constraints from architectural
allocation of software capabilities. To prevent
software developed at a low level process from
corrupting software developed at a higher level
process, several mechanisms are considered, such as
the firewall concept. However, to reduce the
complexity of the inconsistent process throughout
the whole system, a “safety system high” concept is
used. The AAL is determined based on the highest
severity level of software assigned to that platform.
For example, to simplify the development process
management, all software developed on a platform
certifiable to level B is developed to level B, even if
the software has an assigned safety level or ASL of
D.

The incremental strategy has been widely used for
large safety-critical systems. Not only because a
program needs to improve as the equipment and
technology improve, but also because the safety
concern is changing as the phases proceed and the
system becomes operational in a production sense.
To prevent rework efforts as much as possible, the
DAL can be used to demonstrate the achievement of
compliance to final phase requirements. This DAL
is committed to by software development and is a
development strategy to meet or surpass the current
AAL requirement. To accommodate the incremental
strategy, a separate set of the three software (safety)
levels is maintained. An advantage of maintaining
different software (safety) levels is that it helps an
individual organization to focus on its own tasks. In
particular, the software development team only
needs to focus on the DAL and develops the
software to the assigned DAL. It is the safety
engineers responsibility to assure the relationship of
ASL ≤ AAL ≤ DAL.

5. RESULTS

5.1 Identified Anomalies

 Anomalies are the intolerable inconsistencies.
This section describes the anomalies that are
identified during the implementation of the process,
and a general process of how to resolve these
anomalies. Two types of anomalies are recognized,
e.g., internal and external. The internal anomalies
are due to the sharing of the same software
requirement by different software configuration
items. For example, a system service function may
be used in several subsystems that are on different
platforms. Different failure effects may be
estimated, since different safety concerns are
applied to different subsystems. As a result,
different ASLs are assigned for the same software
requirement. The internal anomalies can be resolved
by assigning the highest software (safety) level to
the software being concerned. In other cases, similar
design may be used on platforms at different
certification levels. In those cases, the safety level
for the requirements allocated to the similar design
carries a dual designation, say “B/D”. It is then
understood that

System
Architecture

Design
Software

Allocation

Software
Development

System Safety
Assessment

Requirement
Management System

Database

Cross Checking
software (safety) levels

Resolve intolerable
inconsistent software

(safety) levels

AAL

DAL

ASL

FIGURE 4. PROCESS OF MANAGING INCONSISTENT SOFTWARE (SAFETY) LEVELS

those requirements must be examined for two
processes.

 External anomalies are caused due to the
inconsistency. The identified external anomalies are:
(1) The DAL for a particular entry in the database is
denoted as N/A (non applicable) or the value is
missing, while the corresponding ASL (and/or AAL)
has a level assigned. This occurs especially when
COTS (Commercial Off The Shelf) products are
used. (2) One of the software (safety) levels (AAL,
or DAL) has two values assigned, while the other
one has only one level. (3) The DAL is lower than
the AAL and ASL.

5.2 Resolving Anomalies

 The safety engineers, software development team
leads, and system engineers are informed of the
anomalies that have occurred. For each anomaly
identified, corresponding safety engineers and
software engineers work together to resolve the
problem. Once the anomalies are resolved and a
consensus is reached, a “Software Change Control
Board” reviews and approves the request for level
changes. This satisfies the issues of configuration
control for the database. Software safety engineers
assign the ASL and AAL changes that are reviewed
internally by the software safety team. Moreover,
software safety engineers participate on the
Software Change Control Board with sign-off
capability for all three software levels, i.e., ASL,
AAL, and DAL. Recall that the goal of this process
is to assure that ASL ≤ AAL ≤ DAL.

6. CONCLUSION

 In this paper, we present a method of determining
software (safety) levels based on fault tree analysis.
The inconsistency problem resulting from the need
to operate concurrent activities to meet schedules in
building large, complex systems is addressed and a
strategy of handling it is discussed. The software
levels determined using this approach demonstrate
the safety quality of a safety-critical system.
Moreover, the approach is suitable for systems
developed incrementally. Extensions being
investigated are the relationship of software (safety)
levels to other analysis approaches, e.g., safety-
critical thread analysis and the use of software fault-
injection techniques to harden the software itself,
guided by the software level markings.

7. REFERENCES

[1] Software Considerations in Airborne Systems
and Equipment Certification, Document No.
RTCA/DO-178B, prepared by Special Committee
167 of RTCA, December 1, 1992.
[2] A System Engineering Capability Maturity
Model, Version 1.1, System Engineering Capability
Maturity Model Project, Carnegie Mellon
University Software Engineering Institute, SECMM-
95-01 CMU/SEI-95-MM-003, Nov. 1995.
[3] The Capability Maturity Model: Guidelines for
Improvement the Software Process, Carnegie
Mellon University, Software Engineering Institute,
Addison-Wesley Publishing Company, 1995.

[4] Mark C. Paulk, “How ISO 9001 Compares with
the CMM”, IEEE Software, January 1995.
[5] Global Position System: Theory and
Applications, Volume I and II, American Institute of
Aeronautics and Aeronautics, Inc. 1996.
[6] G. Watt, “Phase 1 Software Level Marking
Guidelines”, WAAS SEN 5-2-5, 1997.

